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Abstract - The secondary data for estimating the 
clutter covariance matrix in space-time adaptive 
processing (STAP) is normally obtained from range 
rings surrounding the test range ring.  The assumption 
is that near-by range rings are representative of the test 
range ring.  However, this is not always true.  A clutter 
model was developed and the condition necessary for 
obtaining a good estimate of the clutter covariance 
matrix is presented.  A theoretical basis for choosing 
reference rings, which contain clutter patches that are 
representative of one or two patches within the test 
range ring, is provided.  An algorithm for using a priori 
map data to classify clutter patches based upon the type 
of land features contained within them is presented.  It 
is conjectured that patches with equivalent 
classifications will have representative radar returns.  
Applications to post-Doppler processing are presented 
and positive results are provided using radar data. 
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1. Introduction 
 

Space-time adaptive processing (STAP) is 
viewed as a potentially effective means for 
suppressing ground clutter received by an airborne 
radar.  However, a serious problem with any 
STAP approach involves the accurate estimation 
of unknown clutter statistics.  This problem is 
further complicated by the fact that airborne radars 
are likely to encounter non-homogeneous clutter 
environments.  Previous efforts [1,2] have 
recognized this problem and have shown the 
benefits of using a priori data to increase 
performance in non-homogeneous clutter 
environments for Constant False Alarm Rate 
(CFAR) processing and pre-adaptive filtering with 
STAP. 

This paper documents the results of our 
effort to develop, implement and test a computer-
based algorithm to utilize a priori terrain data in 
order to improve target detection.  Our approach 
was to leverage existing terrain datasets to help 
selectively choose secondary data for estimating 
the clutter covariance matrix needed for post- 
Doppler radar processing.  In so doing we will 
show that performance can be improved.  This use 
of terrain data provides insight into how to build 
one aspect of the next generation signal processing 
algorithm and to possibly extend its use to other 
areas such as tracking and identification. 

Section 2 of the paper provides a 
description of our clutter model.  Section 3 
discusses the difficulty in choosing secondary data 
for the estimation of a clutter covariance matrix in 
a non-homogeneous environment and an approach 
for easing this difficulty with adaptive post- 
Doppler processing.  Section 4 departs from 
theory-based discussion and presents a brief 
description of an airborne radar measurement 
program used in testing our methodology.  Section 
5 describes our a priori data approach to estimate 
the clutter covariance matrix in non-homogeneous 
environments.  Section 6 presents our results and 
Section 7 presents our conclusions and 
recommended future work. 
 
2. Clutter Model 
 

Ward's clutter model [3] is employed to 
determine whether or not available secondary data 
may be useful in estimating the clutter covariance 
matrix of a test cell.  Ward approximates a 
continuous field of clutter by modeling the clutter 
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return from each range ring as the superposition of 
a large number of independent point scatters or 
clutter patches evenly distributed in azimuth about 
the radar.  For simplicity, we assume 
unambiguous range.  Then the clutter return at any 
instant is from a single range ring. 

If we divide the range ring into a total of 
Nc clutter patches, each patch has an angular 
extent given by ∆θ = 2π/Nc.  The response in the 
nth channel, due to the mth pulse, in the lth range 
ring, after summing over all k patches is 
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where lkϖ  is the normalized Doppler frequency, 

lkν is the normalized spatial frequency, and lkα is 
the complex received signal amplitude.  From this 
equation the clutter covariance matrix for the lth 
range ring can be expressed as 
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kα l is the estimation of the mean-
square value of the complex amplitude magnitude 
for each of the Nc clutter patches in the range ring 
and v k l is the space-time steering vector.  Since 
the space-time steering vector can be specified a 
priori the estimation of the clutter covariance 
matrix reduces to the estimation of  ] || [ E 2

kα l .  
Therefore, it is important to have a good method 
for estimating this value by properly choosing 
representative clutter data. 
 
3. Representative Secondary Clutter 
 

Assume the test cell in which a target is to 
be detected is located in the lth range ring.  Since 
Ml, the clutter covariance matrix of the lth range 
ring is unknown, the objective is to select 
secondary data from other range rings in order to 
estimate Ml.  Suppose attention is focused on the 
(l′)th range ring where l′≠l.  The question that arises 
is, "Is the clutter in the (l′)th range ring 
representative of the clutter in the lth range ring?"   

This is true provided each clutter patch in 
the lth range ring having a specific mean-square 
complex amplitude magnitude and a specific pair of 
normalized Doppler and spatial frequencies has a 
corresponding clutter patch in the (l′)th range ring 
having approximately the same mean-square 
complex amplitude and approximately the same 
normalized Doppler and spatial frequencies. 

Even though the pairs of normalized 
Doppler and spatial frequencies remain invariant 
from one range ring to another, it is unlikely in a 
non-homogeneous clutter environment that 
E[αl′k′2] = E[αlk2] for all Nc pairs of clutter 
patches in the two range rings.  In fact, unless the 
clutter is entirely homogeneous throughout both 
range rings, it is unlikely that the clutter in the (l′)th 
range ring will be representative of the clutter in the 
lth range ring over the entire clutter ridge. 

However, the concept of representative 
secondary clutter data may be meaningful on a 
selective basis.  For example, consider post-
Doppler adaptive beamforming in which non-
adaptive Doppler filtering is first performed 
separately on the M pulses from each array 
element.  In effect, this produces at each array 
element the output of M Doppler filters that 
subdivide the normalized Doppler frequency 
interval into M contiguous Doppler bins.  The basic 
idea is that a Doppler filter, with the capability for 
very low Doppler sidelobes, rejects the clutter 
whose Doppler frequencies fall outside of its 
passband.  In this way, the residual clutter along the 
clutter ridge is localized in terms of its normalized 
spatial frequencies.  Adaptive spatial filtering is 
subsequently performed to reduce the residual 
clutter.  This is repeated for each of the M Doppler 
filters.  Because the residual clutter in normalized 
Doppler and spatial frequencies is confined to a 
localized region along the clutter ridge, it is no 
longer necessary that the range ring from which 
secondary data is being collected be equivalent in 
its entirety to the range ring in which the test cell is 
located.  Now the clutter in only a few patches of 
each range ring need be equivalent i.e. those that lie 
along the same iso-Doppler ridge. 
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4. Airborne Radar Data 
 
 To assist us in building and testing our 
methodology for selecting equivalent range rings 
we used data gathered under a U. S. Air Force 
program.  The AFRL Sensors Directorate Multi-
channel Airborne Radar Measurements 
(MCARM) program was designed to collect 
multi-channel clutter data from an airborne 
platform with a side looking radar [4].  Northrop 
Grumman collected MCARM data during flights 
over the Delmarva Peninsula and the east coast of 
the United States.  A Northrop Grumman owned 
BAC 1-11 was used as a platform for the L-Band 
radar data collection system.  The radar consisted 
of 32 sub-apertures combined into 22 adaptive 
channel elements.  The elements were arranged in 
a 2 by 11 array.  Data was collected at a variety of 
pulse repetition frequencies (PRFs) over various 
terrain including mountains, rural, urban, and 
land/sea interfaces.  There were a total of eleven 
flights with more than 50 Gigabytes of data 
collected and additional flights planned.  We 
chose this data because of its varied and 
heterogeneous clutter environment. 
 
5. A Priori Data 
 

Digital terrain data was obtained from the 
United States Geological Survey (USGS) to 
classify the ground environment that the MCARM 
radar was irradiating.  Since the Delmarva 
Peninsula has little variation in elevation we 
decided not to incorporate digital elevation data 
that would provide a measure of the angular 
reflection back to the antenna.  Instead, we chose 
Land Use and Land Cover (LULC) data that 
classifies terrain using a grid of 200 by 200 meter 
cells and codes that describe the terrain in each 
cell.  There are 9 major codes and 38 minor codes 
that have a more detailed description.  The LULC 
data provides a measure of the amount of radar 
reflection and absorption from the ground.  In 
order to simplify our approach we only used the 
major codes and, if deemed necessary, planned on 
using the minor codes later.  An example of 
LULC major codes are: Urban Areas, Agricultural 
Land, Water, etc. 
 
 

6. Research Problem, Hypothesis, 
and Preliminary Findings 
 

Can post-Doppler STAP performance be 
improved by choosing secondary data based upon 
a priori map data?  To determine the answer to 
this question we compared our results with what 
we call the standard algorithm or sliding window 
algorithm.  The sliding window algorithm chooses 
N/2 range rings above and below the test ring 
minus two guard rings (N is twice the number of 
independent channels of the MCARM radar which 
is 22.) see Figure 1.  The sliding window 
algorithm has an implicit assumption that the 
range rings near the test ring are homogeneous 
and are representative of the test ring.  Our 
algorithm chooses secondary data by comparing 
the LULC codes of the Doppler patch that 
interferes with the test patch in the same range 
ring and all of the patches that lie on the same iso-
Doppler curve of interest.  Our assumption is that 
the major interferer after range and Doppler 
filtering will be the clutter due to the ground 
within the same range ring as the test cell. 
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Figure 1. Sliding Window and KBMapSTAP 

Secondary Data Selection 
 
 It was our hypothesis that our algorithm 
(KBMapSTAP) would do as well as the sliding 
window algorithm where the test and surrounding 
area are homogeneous and KBMapSTAP would 
do better than the sliding window algorithm for 
areas where the ground is heterogeneous.  To test 
our hypothesis we injected a target at different 
range rings with the same radial velocity and 
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power.  The only difference in the implementation 
of the two algorithms was the choice of the 
secondary range rings.  After Doppler processing, 
we calculated a Modified Sample Matrix 
Inversion (MSMI) statistic for each range ring of 
interest [1,5]. 
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where s is the space-time steering vector, R̂ is the 
estimate of the clutter covariance matrix and xi is 
the radar return vector for the ith range ring.  It can 
be seen that the MSMI has a thresholding or 
detection quality similar to a constant false alarm 
rate (CFAR) property.  That is, a MSMI threshold 
can be chosen y such that those radar returns, xi, 
that have an MSMI that exceeds y may be 
considered as potential targets.   
 Figures 2 and 3 represent the MSMI 
results for the two algorithms without an injected 
target.  The mean and variance of the results are 
slightly smaller for KBMapSTAP than for the 
sliding window algorithm.  If a threshold of 20 db 
were chosen, then the KBMapSTAP would detect 
fewer false alarms than the sliding window 
algorithm.  
 

 
 

Figure 2. Sliding Window – No Injected Target 
(Mean MSMI = 12.9, Var MSMI = 28.9) 

 
 

 
 
Figure 3. KBMapSTAP – No Injected Target 

(Mean MSMI = 11.7, Var MSMI = 26.6) 
 

In heterogeneous environments, 
KBMapSTAP did consistently better than the 
sliding window algorithm.  For example, Figures 4 
and 5 have a target injected at the same power at 
range bin 296 and show the MSMI output from 
each algorithm.  If a threshold is chosen at 25 dB 
we can see that the sliding window algorithm 
wouldn’t detect the target.  However, 
KBMapSTAP would clearly detect it at 5 dB 
above the threshold. 
 

 
 

Figure 4. Sliding Window – Target Injected at 
Range Bin 296 

 (Mean MSMI = 12.7, Var MSMI = 28.3) 
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Figure 5. KBMapSTAP – Target Injected at 
Range Bin 296 

(Mean MSMI = 12.3, Var MSMI = 35.4) 
 
 To test our hypothesis that the 
KBMapSTAP algorithm would perform the same 
as the standard algorithm when a target occurred 
in a homogeneous clutter environment, we 
injected a target in range bin 475.  This range is in 
water and is surrounded by water such that the 
major ground clutter is due also to water.  Figure 6 
shows the result of the sliding window algorithm 
and Figure 7 the result for KBMapSTAP.  It was 
conjectured that the KBMapSTAP would do as 
well as the sliding window algorithm and it did.  
One could argue however, that it did better 
considering the lower mean and variance clutter 
levels.   
 

 
 

Figure 6. Sliding Window – Target Injected at 
Range Bin 475 

(Mean MSMI = 12.4, Var MSMI = 28.5) 
 

 

 
 

Figure 7. KBMapSTAP – Target Injected at 
Range Bin 475 

(Mean MSMI = 11.2, Var MSMI = 26.9) 
 
7. Conclusions and Future Work 
 
 From our limited analysis it can be 
concluded that the KBMapSTAP algorithm 
outperforms the standard or sliding window 
algorithm for heterogeneous clutter environments 
and performs approximately the same for 
homogeneous clutter environments.  Post-Doppler 
STAP performance can be improved.  The data 
presented here are limited.  More analysis and 
development is required before a quantitative 
measure of performance can be obtained. 
 There are some issues that also need to be 
explored.  The data from the USGS database were 
collected approximately 10 years before the radar 
data was obtained.  It is likely that some of the 
USGS data was not current when the radar data 
were collected.  Techniques to validate map data 
with the radar need to be explored for those cases 
where recent map data are not available and when 
weather and environmental conditions have 
changed, e.g. snow and flooding.  
 Map precision is important when the 
radar’s range and angle resolution is significantly 
different from the map data precision.  For our 
experiment the range resolution of the radar was 
120 meters and the LULC data points were at a 
resolution of 200 meters by 200 meters.  Even 
with this difference in precision the KBMapSTAP 
algorithm performed well.  A sensitivity analysis 
should be performed and the clutter patch 
characterization portion of the algorithm modified 
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for varying precision permutations between the 
radar and the available map data.   
 The Delmarva area is relatively flat and 
using LULC data worked well.  If however, the 
terrain is mountainous then the algorithm must 
include digital elevation model data.  This area 
needs further investigation along with tests to 
evaluate its performance.  
 Finally, the LULC data we used does not 
contain explicit information about man-made 
features such as railroads, roads, bridges, power 
lines, etc.  The USGS does offer Digital Line 
Graph data that maps these features.  Future work 
should be done to incorporate this data into the 
KBMapSTAP algorithm and tests done to measure 
improvement. 
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